Effect of Surface Nanocrystallization on Wear Behavior of Steels: A Review

Author:

Morshed-Behbahani Khashayar1ORCID,Farhat Zoheir1ORCID,Nasiri Ali1ORCID

Affiliation:

1. Department of Mechanical Engineering, Dalhousie University, 1360 Barrington St., Halifax, NS B3H 4R2, Canada

Abstract

Ferrous alloys, particularly steels, form a specialized class of metallic materials extensively employed in industrial sectors to combat deterioration and failures caused by wear. Despite their commendable mechanical properties, steels are not immune to wear-induced degradation. In this context, surface nanocrystallization (SNC) technologies have carved a distinct niche for themselves by enabling the nanostructuring of the surface layer (with grain sizes < 100 nm). This process enhances overall mechanical properties to a level desirable for wear resistance while preserving the chemical composition. Existing literature has consistently highlighted the efficacy of various SNC methods in improving the wear resistance of ferrous alloys, positioning SNC as a promising tool to extend materials’ service life in practical applications. This review provides a comprehensive examination of the SNC techniques employed in surface treatment of ferrous alloys and their impact on wear behavior. We delved into the underlying mechanisms governing wear in SNC-treated Fe-based alloys and concluded with a discussion on current challenges and future perspectives in this evolving field.

Funder

Natural Sciences and Engineering Research Council

Canada Research Chair

Ocean Frontier Institute

Dalhousie University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3