The Effect of SiO2 Particle Size on Crystallization Behavior and Space Charge Properties for SiO2/MMT/LDPE Composites

Author:

Jiang Hongtao12ORCID,Yuan Hong13ORCID,Yu Qunguang2,Xie Jing2

Affiliation:

1. Postdoctoral Scientific Research Mobile Station, Jinan University, Guangzhou 510632, China

2. Postdoctoral Innovation Practice Base, Guangzhou Cable Works Co., Ltd., Guangzhou 511480, China

3. School of Architectural Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, China

Abstract

The matrix material used in this paper was low-density polyethene (LDPE), and the added particles selected were silicon oxide (SiO2) particles and montmorillonite (MMT) particles. The sizes of the SiO2 particles were 1 µm, 30 nm, and 100 nm, respectively; three kinds of SiO2/MMT/LDPE multi-component composites were prepared based on MMT/LDPE composites doped with MMT particles. The effect of the SiO2 particle size on the crystallization behavior and space charge properties of SiO2/MMT/LDPE composites was studied. The crystalline behaviors and crystallinity of the materials were analyzed. At the same time, the changes in the relative dielectric constant εr and loss factor tanδ for each material with the influence of frequency were studied, and the space charge accumulation, residual characteristics, and apparent charge mobility of each material were explored. The results show that the smaller the size of the added particles, the smaller the grain size and the clearer the grain outline for the multi-composite material. After adding 30 nm SiO2 particles, the crystallinity of the material increases significantly. The microstructure formed by the addition of 100 nm SiO2 particles effectively restricts molecular chain movement and makes it difficult to establish the polarization of the composite. The incorporation of large-size particles can reduce the proportion of the crystalline structure for the material as a whole, resulting in the formation of a new structure to promote charge transfer. Among the three kinds of SiO2 particles, the addition of 30 nm SiO2 particles can effectively suppress the space charge, and the composite material has the lowest residual space charge after depolarization. The addition of 100 nm SiO2 particles can cause the accumulation of many homopolar charges near the anode.

Funder

Guangzhou Projects for Postdoctoral Research Funds

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3