Application of Air-Coupled Ultrasonic Arrays for Excitation of a Slow Antisymmetric Lamb Wave

Author:

Kazys Rymantas,Vilpisauskas Almantas,Sestoke Justina

Abstract

Air-coupled excitation and reception of ultrasonic guided waves is already used for non-destructive testing and evaluation (NDT & E). Usually for air-coupled NDT & E purposes the lowest zero-order antisymmetric Lamb wave mode A0 is used, because it is most sensitive to internal defects and thickness variations. The velocity of the A0 mode is reduced with a reducing frequency and at low frequencies may become slower than the ultrasound velocity in air. Such a wave is named a slow Lamb wave. The objective of this research was the development and investigation of an air-coupled excitation method of the slow zero-order antisymmetric Lamb wave based on application of a piezoceramic ultrasonic array. We have proposed to excite the A0 mode by a planar air-coupled phased array with rectangular elements. The array is matched to the wavelength of the A0 mode in the film. Performance of such an excitation method was investigated both theoretically and experimentally. Two excitation methods of the array were analysed: when all array elements were excited simultaneously or one by one with a proper delay. In order to reduce crosstalk between array elements via the air gap, we have proposed an optimization procedure based on additional shifts of electric excitation impulses of the array elements. For experimental verification of the proposed approach a prototype of the air-coupled eight element array made of Pz-29 piezoceramic strips was manufactured. Experimental validation confirmed the possibility of exciting the slow A0 Lamb wave mode through the air gap in thin plates and films.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3