Autumnal Potassium Induced Modulations in Plant Osmoprotectant Substances, Nutrient Stoichiometry and Precision Sustainable Seedling Cultivation in Parashorea chinensis

Author:

Ullah Saif12ORCID,Liu Fang3,Xie Le4,Liao Si12,Li Wannian12,Ali Izhar12ORCID,Yang Mei12ORCID,Xu Yuanyuan12

Affiliation:

1. Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China

2. Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China

3. Nanning Arboretum in Guangxi Zhuang Autonomous Region, Nanning 530004, China

4. Forestry Seedling Station of Guangxi, Nanning 530002, China

Abstract

Parashorea chinensis, an endemic tree species in China’s tropical rainforests, holds ecological and economic importance. Challenges like low resistance, poor quality, and low survival rates hinder its successful cultivation. This study explores the potential of autumn potassium fertilization on Parashorea seedlings from two provenances (Napo and Tianyang). The treatments included no fertilizer (CK-1), a single application of 160 mg K·plant−1 (CK-2), and various potassium levels K1, K2, K3, K4, K5, and K6 (corresponding to 0, 40, 80, 160, 320, and 640 mg·K·plant−1, respectively) combined with nitrogen (200 mg·plant−1) and phosphorus (80 mg·plant−1) fertilization. The findings indicate that autumn potassium application, in conjunction with nitrogen (N) and phosphorus (P) fertilization, significantly enhances seedling height and biomass in both provenances, resulting in an average increase of 101% and 89% under the K4 treatment compared to CK-1 and CK-2, comparatively. Both Napo and Tianyang provenances exhibited distinct responses in photosynthetic rate (2.70 μmol·m−2·s−1 and 1.97 μmol·m−2·s−1, respectively) and stomatal conductance (0.042 mol·m−2·s−1 and 0.029 mol·m−2·s−1, respectively) to the K4 treatment, which proved most effective. The chlorophyll content was significantly higher for Napo provenance with the K3 treatment (74.31%, 58.99%), while for Tianyang, it was higher with the K4 treatment (41.48%, 17.36%), compared to CK-1 and CK-2, respectively. Antioxidant enzymes activity, osmoregulatory capacity, and malondialdehyde content all exhibited variations with potassium application levels, with the K4 treatment offering significant benefits. In Napo provenance, lignin (199.82 mg·g−1) and cellulose (252.38 mg·g−1) peaked at K4, while Tianyang exhibited variation, higher lignin (184.25 mg·g−1) at K3, and cellulose (257.73 mg·g−1) at K4. Nutrient content analysis demonstrates that the K4 treatment enhances nutrient absorption and storage, increasing total N (21.56 mg·kg−1), P (4.69 mg·kg−1), and K (13.49 mg·kg−1) content. A comprehensive analysis reveals that the K4 treatment yields the highest quality scores (1.87, 1.85) and membership values (0.82, 0.68) for both Napo and Tianyang seedlings, with Napo seedlings outperforming their Tianyang provenance. Thus, treatment K4 underscores the effectiveness of autumn potassium applications for robust seedling cultivation and adaptation, offering valuable insights for sustainable cultivation practices.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Guangxi Forestry science and technology project, GuiLinKeYan

Subsidy project for improved tree varieties in Guangxi, GuiLin ChangFa

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3