Abstract
Photodynamic therapy (PDT), as a novel technique, has been extensively employed in cancer treatment by utilizing reactive oxygen species (ROS) to kill malignant cells. However, most photosensitizers (PSs) are short of ROS yield and affect the therapeutic effect of PDT. Thus, there is a substantial demand for the development of novel PSs for PDT to advance its clinical translation. In this study, we put forward a new strategy for PS synthesis via modifying graphene quantum dots (GQDs) on the surface of rare-earth elements doped upconversion nanoparticles (UCNPs) to produce UCNPs@GQDs with core-shell structure. This new type of PSs combined the merits of UCNPs and GQDs and produced ROS efficiently under near-infrared light excitation to trigger the PDT process. UCNPs@GQDs exhibited high biocompatibility and obvious concentration-dependent PDT efficiency, shedding light on nanomaterials-based PDT development.
Funder
National Natural Science Foundation of China
Beijing Natural Science Foundation
Fundamental Research Funds for the Central Universities
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献