Thermofluor-Based Optimization Strategy for the Stabilization of Recombinant Human Soluble Catechol-O-Methyltransferase

Author:

Gonçalves Ana M.,Pedro Augusto Q.,Oliveira Diana M.,Oliveira Adriana E.,Santos Marino F. A.ORCID,Correia Márcia A. S.,Queiroz João A.ORCID,Gallardo EugéniaORCID,Romão Maria J.ORCID,Passarinha Luís A.ORCID

Abstract

Catechol-O-methyltransferase (COMT) has been involved in a number of medical conditions including catechol-estrogen-induced cancers and a great range of cardiovascular and neurodegenerative diseases such as Parkinson’s disease. Currently, Parkinson’s disease treatment relies on a triple prophylaxis, involving dopamine replacement by levodopa, the use of aromatic L-amino acid decarboxylase inhibitors, and the use of COMT inhibitors. Typically, COMT is highly thermolabile, and its soluble isoform (SCOMT) loses biological activity within a short time span preventing further structural and functional trials. Herein, we characterized the thermal stability profile of lysate cells from Komagataella pastoris containing human recombinant SCOMT (hSCOMT) and enzyme-purified fractions (by Immobilized Metal Affinity Chromatography—IMAC) upon interaction with several buffers and additives by Thermal Shift Assay (TSA) and a biological activity assessment. Based on the obtained results, potential conditions able to increase the thermal stability of hSCOMT have been found through the analysis of melting temperature (Tm) variations. Moreover, the use of the ionic liquid 1-butyl-3-methylimidazolium chloride [C4mim]Cl (along with cysteine, trehalose, and glycerol) ensures complete protein solubilization as well as an increment in the protein Tm of approximately 10 °C. Thus, the developed formulation enhances hSCOMT stability with an increment in the percentage of activity recovery of 200% and 70% when the protein was stored at 4 °C and −80 °C, respectively, for 12 h. The formation of metanephrine over time confirmed that the enzyme showed twice the productivity in the presence of the additive. These outstanding achievements might pave the way for the development of future hSCOMT structural and biophysical studies, which are fundamental for the design of novel therapeutic molecules.

Funder

European Regional Development Fund

Fundação para a Ciência e Tecnologia

COMPETE 2020—Programa Operacional Competitividade e Internacionalização

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3