Author:
Zhang Kuibao,Yin Dan,Xu Kai,Zhang Haibin
Abstract
Synroc is recognized as the second-generation waste matrice for nuclear waste disposal. Zirconolite is one of the most durable Synroc minerals. In this study, Gd and Hf were selected as the surrogates of trivalent and tetravalent actinide nuclides. Gd-bearing Hf-zirconolite (Ca1−xHf1−xGd2xTi2O7) ceramic waste forms were rapidly synthesized from a self-propagating technique using CuO as the oxidant. The results indicate that Gd can concurrently replace the Ca and Hf sites. However, Gd2O3 could not completely be incorporated into the lattice structure of zirconolite when the x value is higher than 0.8. The aqueous durability of selected Gd-Hf codoped sample (Hf-Gd-0.6) was tested, where the 42 days normalized leaching rates (LRi) of Ca, Cu, Gd and Hf are measured to be 1.57, 0.13, 4.72 × 10−7 and 1.59 × 10−8 g·m−2·d−1.
Subject
General Materials Science
Reference49 articles.
1. Design and Operation of High Level Waste, Vitrification and Storage Facility,1977
2. An Introduction to Nuclear Waste Immobilization;Ojovan,2005
3. Glass, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes;Caurant,2009
4. Nuclear waste forms for actinides
5. Immobilisation of radioactive waste in glasses, glass composite materials and ceramics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献