Impaired Peripheral Vascular Function Following Ischemic Stroke in Mice: Potential Insights into Blood Pressure Variations in the Post-Stroke Patient

Author:

Yilmaz Gokhan1ORCID,Alexander Jonathan Steven2ORCID

Affiliation:

1. Molecular Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA

2. Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA

Abstract

High systolic blood pressure and increased blood pressure variability after the onset of ischemic stroke are associated with poor clinical outcomes. One of the key determinants of blood pressure is arteriolar size, determined by vascular smooth muscle tone and vasodilatory and vasoconstrictor substances that are released by the endothelium. The aim of this study is to outline alterations in vasomotor function in isolated peripheral arteries following ischemic stroke. The reactivity of thoracic aortic segments from male C57BL/6 mice to dilators and constrictors was quantified using wire myography. Acetylcholine-induced endothelium-dependent vasodilation was impaired after ischemic stroke (LogIC50 Sham = −7.499, LogIC50 Stroke = −7.350, p = 0.0132, n = 19, 31 respectively). The vasodilatory responses to SNP were identical in the isolated aortas in the sham and stroke groups. Phenylephrine-induced vasoconstriction was impaired in the aortas isolated from the stroke animals in comparison to their sham treatment counterparts (Sham LogEC50= −6.652 vs. Stroke LogEC50 = −6.475, p < 0.001). Our study demonstrates that 24 h post-ischemic stroke, peripheral vascular responses are impaired in remote arteries. The aortas from the stroke animals exhibited reduced vasoconstrictor and endothelium-dependent vasodilator responses, while the endothelium-independent vasodilatory responses were preserved. Since both the vasodilatory and vasoconstrictor responses of peripheral arteries are impaired following ischemic stroke, our findings might explain increased blood pressure variability following ischemic stroke.

Funder

PSC CUNY Cycle 54 Award

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3