Multifractal Analysis of the Structure of Organic and Inorganic Shale Pores Using Nuclear Magnetic Resonance (NMR) Measurement

Author:

Yang Rui12,Liu Weiqun2,Meng Lingren3

Affiliation:

1. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, China

2. State Key Laboratory for Geomechanics and Deep Underground and Engineering, China University of Mining and Science, Xuzhou 221116, China

3. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

The multifractal structure of shale pores significantly affects the occurrence of fluids and the permeability of shale reservoirs. However, there are few studies on the multifractal characteristics of shale pores that distinguish between organic and inorganic pores. In this study, we obtained the pore size distribution (PSD) of organic and inorganic shale pores separately by using a new NMR-based method and conducted a multifractal analysis of the structure of organic and inorganic shale pores based on PSD. We then investigated the geological significance of the multifractal characteristics of organic and inorganic shale pores using two multifractal characteristic parameters. The results showed that the structures of both organic and inorganic pores have multifractal characteristics. Inorganic pores have stronger heterogeneity and poorer connectivity compared to organic pores. The multifractal characteristics of inorganic pores significantly affect shale permeability and irreducible water saturation. Greater heterogeneity in the inorganic pore structure results in lower shale permeability and higher irreducible water saturation. Meanwhile, better connectivity leads to higher shale permeability and lower irreducible water saturation. The multifractal characteristics of organic pores significantly affect the shale adsorption capacity and have a weak impact on irreducible water saturation. Greater heterogeneity in the organic pore structure results in the shale having stronger adsorption capacity and higher irreducible water saturation The results also indicate that the multifractal characteristic parameters of inorganic pores can be regarded as an index for estimating the irreducible water saturation and flowback rate of fracturing fluid, and the multifractal characteristic parameters of organic pores can be regarded as an index for evaluating the quality of shale reservoirs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of Liaoning Province

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3