Path Planning in the Case of Swarm Unmanned Surface Vehicles for Visiting Multiple Targets

Author:

Ntakolia Charis12,Lyridis Dimitrios V.2ORCID

Affiliation:

1. Department of Aeronautical Studies, Sector of Materials Engineering, Machining Technology and Production Management, Hellenic Air Force Academy, Dekeleia Base, 13672 Acharnes, Greece

2. Laboratory for Maritime Transport, National Technical University of Athens, 15780 Athens, Greece

Abstract

In this study, we present a hybrid approach of Ant Colony Optimization algorithm (ACO) with fuzzy logic and clustering methods to solve multiobjective path planning problems in the case of swarm Unmanned Surface Vehicles (USVs). This study aims to further explore the performance of the ACO algorithm by integrating fuzzy logic in order to cope with the multiple contradicting objectives and generate quality solutions by in-parallel identifying the mission areas of each USV to reach the desired targets. The design of the operational areas for each USV in the swarm is performed by a comparative evaluation of three popular clustering algorithms: Mini Batch K-Means, Ward Clustering and Birch. Following the identification of the operational areas, the design of each USV path to perform the operation is performed based on the minimization of traveled distance and energy consumption, as well as the maximization of path smoothness. To solve this multiobjective path planning problem, a comparative evaluation is conducted among ACO and fuzzy inference systems, Mamdani (ACO-Mamdani) and Takagi–Sugeno–Kang (ACO-TSK). The results show that depending on the needs of the application, each methodology can contribute, respectively. ACO-Mamdani generates better paths, but ACO-TSK presents higher computation efficiency.

Funder

the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3