Sedimentary Facies, Architectural Elements, and Depositional Environments of the Maastrichtian Pab Formation in the Rakhi Gorge, Eastern Sulaiman Ranges, Pakistan

Author:

Mehmood Mubashir1ORCID,Naseem Abbas Ali1,Saleem Maryam2,Rehman Junaid ur3ORCID,Kontakiotis George4ORCID,Janjuhah Hammad Tariq5ORCID,Khan Emad Ullah3ORCID,Antonarakou Assimina4ORCID,Khan Ihtisham3,Rehman Anees ur3,Siyar Syed Mamoon6

Affiliation:

1. Department of Earth Science, Quaid-e-Azam University, Islamabad 45320, Pakistan

2. Department of Earth and Environmental Sciences, Bahria University, Islamabad 44000, Pakistan

3. Department of Geology, Abdul Wali Khan University, Mardan 23200, Pakistan

4. Department of Historical Geology-Paleontology, Faculty of Geology and Geoenvironment, School of Earth Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece

5. Department of Geology, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan

6. Department of Geology, University of Malakand, Chakdarrah 18000, Pakistan

Abstract

An integrated study of sediments was conducted to examine the facies architecture and depositional environment of the Cretaceous Pab Formation, Rakhi Gorge, and Suleiman Ranges, Pakistan. This research focused on analyzing architectural elements and facies, which are not commonly studied in sedimentary basins in Pakistan. To identify lithofacies, outcrop analysis and section measurement were performed. The identified lithofacies were then categorized based on their depositional characteristics and facies associations, with a total of nine types identified within a stratigraphic thickness of approximately 480 m. These facies were mainly indicative of high-energy environments, although the specifics varied by location. Sedimentary structures such as planar and trough crossbedding, lamination, nodularity, load-casts, and fossil traces were found within these facies, indicating high-energy environments with a few exceptions in calm environments. The identified facies were grouped into seven architectural elements according to their depositional environments: delta-dominated elements, including laminated shale sheet elements (LS), fine sandstone elements (SF), planar cross-bedded sandstone elements (SCp), trace sandstone elements (ST), and paleosol elements (Pa); and river-dominated elements, including trough cross-bedded sandstone elements (SCt), channel deposit elements (CH), and paleosol elements (Pa). These architectural elements, along with their vertical and lateral relationships, indicate a transitional fluvio-deltaic environment within the Pab Formation. In conclusion, by interpreting facies and architectural elements, it is possible to gain a better understanding of the depositional history of the formation and the distribution of reservoir units.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3