Rib Design for Improving the Local Stiffness of Gearbox Housing for Agricultural Electric Vehicles

Author:

Son Gwan-Hee,Cho Seung-Je,Park Young-JunORCID

Abstract

In this work, a rib design process is proposed to improve the local stiffness of gearbox housing for agricultural electric vehicles. Unlike conventional engines, electric powertrain noise includes high frequency factors and pure tones. Considering these characteristics, local stiffness was evaluated in the frequency range of interest for the prediction of dynamic behavior. The local stiffness of the gearbox housing was evaluated using the finite element (FE) model. Experimental modal analysis and FE model update were conducted to ensure the reliability of the results. Using the results of local stiffness evaluations, the stiffness weak point was identified, and the rib design location was selected through a strain analysis. The shape of the ribs was parameterized by width, length, and height, and parameter studies were used to compare the local stiffness increase rate according to the rib design pattern. According to the results, the stiffness increase rate against the same mass was distributed differently according to the rib shape, and the most efficient rib shape was selected from a manufacturing perspective.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference11 articles.

1. An investigation into the feasibility of hybrid and all-electric agricultural machines;McFadzean;Sci. Pap. Ser. A Agron.,2017

2. Ergonomic evaluation of vibration and noise emissions of agricultural tractors based on power and working time;Baesso;Trans. ASABE,2015

3. Sound Character of Electric Vehicles;Govindswamy,2011

4. Annoyance and Loudness of Pure Tones in Noise: Application to Active Control of Fan Noise;Meunier,2004

5. Electrical Motor Drivelines in Commercial All-Electric Vehicles: A Review

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3