Comprehensive Study of the Deformation Behavior during Diffusion Bonding of 1.4301 (AISI 304) as a Function of Material Width and Aspect Ratio

Author:

Gietzelt ThomasORCID,Toth Volker,Kraut Manfred,Gerhards Uta,Dürrschnabel Robin

Abstract

In this paper, the impact of material width as well as aspect ratio on deformation during diffusion bonding of layered samples were investigated. For this, six annular samples with a constant cross-sectional area but an increasing diameter and thus decreasing material width were designed. In a first set of experiments, specimens of a constant height of h = 20 mm were examined. Each sample consisted of 10 sheets, 2 mm in thickness each. Diffusion bonding was performed at T = 1075 °C, t = 4 h and p = 15 MPa. Subsequently, additional samples with a constant aspect ratio of about three but different material width were diffusion bonded. For this, additional layers were added. It was expected that the deformation should be nearly constant for a constant aspect ratio. However, comparing the deformation to a sample possessing an aspect ratio of about three from the first batch, a much higher deformation was obtained now. Bonding a third sample, a deformation in the same range as for the other two samples of the second batch was obtained. It was found that due to the evaporation of metals, the thermocouples were subjected to aging, which was proven indirectly by the evaluation of heating power. Since the diffusion coefficient of the metals follows an exponential law, deformation changes considerably with temperature. This emphasizes that exact temperature measurement is very important, especially for bonding microprocessor devices at constant contact pressure. The experiments showed that the deformation depends strongly on geometry. Bonding parameters cannot be generalized. For layered setups, the contribution that thickness tolerances from manufacturing and leveling of surface roughnesses of sheets add to the overall deformation cannot be reliably separated. After diffusion bonding, thickness tolerances increase with a lateral dimension. Obviously, the stiffness of the pressure dies is crucial.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3