Land-Use-Change-Induced Cooling and Precipitation Reduction in China: Insights from CMIP6 Models

Author:

Tian Peizhi1ORCID,Jian Binyang12,Li Jianrui1ORCID,Cai Xitian1,Wei Jiangfeng3ORCID,Zhang Guo4ORCID

Affiliation:

1. Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China

2. School of Physics, Sun Yat-sen University, Guangzhou 510275, China

3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China

4. CMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing 100081, China

Abstract

In the 21st century, the effect of land use/land cover change (LULCC) on climate has become an area of active research. To explore the effects of LULCC on temperature and precipitation in China, we used outputs from the BCC-CSM2-MR, CESM2, IPSL-CM6A-LR, and UKESM1 models, which participated in the Land Use Model Intercomparison Project (LUMIP) of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Based on these models, we identified temporal variations in precipitation and near-surface air temperature (hereinafter temperature) with and without historical land use changes and their relation with LULCC in China during 1850–2014. We then determined the significant changing period (1972–2012) and revealed the relation between the spatial distribution of historical change in vegetation cover types, precipitation, and temperature. The results showed that annual historical precipitation decreased faster (132.23 mm/(1000 a) faster), while annual historical temperature increased slower (2.70 °C/(1000 a) slower) than that without LULCC during 1850–2014. LULCC not only influenced surface properties to change local precipitation and temperature distributions and mean values, but also affected other components through atmospheric circulations due to typical monsoon characteristics in China. The relative contribution of grassland change to precipitation variation was the largest, while relatively, cropland change contributed the most to temperature variation. Our study innovatively used new model outputs from LUMIP to analyze the impacts of LULCC on precipitation and temperature, which can help to guide and improve future land use management and predictions of precipitation and temperature.

Funder

Innovation and Entrepreneurship Training Program for College Students of Sun Yat-sen University

Natural Science Foundation of Guangdong Province, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference74 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3