Scientometric Review of Sustainable Fire-Resistant Polysaccharide-Based Composite Aerogels

Author:

Tawiah Benjamin12,Ofori Emmanuel A.1ORCID,Bin Fei2

Affiliation:

1. Department of Industrial Art (Textiles), Kwame Nkrumah University of Science and Technology, PMB, Kumasi AK-417-4732, Ghana

2. School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China

Abstract

Fire safety is a critical concern in various industries necessitating the development of sustainable and effective fire-resistant materials. Sustainable fire-resistant polysaccharide-based composite aerogels are regarded as an innovative solution in fire safety applications, and as such, research in this field has increased consistently over the past few years. Despite the plethora of literature on this important subject, only a few studies have attempted to map the global research of sustainable fire-resistant polysaccharide-based composite aerogels to identify the geospatial collaborative network and trend of research. This study utilizes a scientometric review of global trends in sustainable fire-resistant polysaccharide-based composite aerogels research between 2003 and 2023 using VOSviewer and biblioshiny to analyze co-author, co-word, co-citation, clusters, and geospatial maps. A total of 234 bibliographic records from the Scopus database were analyzed to generate the study’s research power networks and geospatial map. The most significant contributions in sustainable fire-resistant polysaccharide-based composite aerogels come from China, the United States, Australia, Canada, and India with records of 194, 20, 11, 9, and 8, respectively. The top five sources for articles in this area of research include ACS Applied Materials and Interfaces, Chemical Engineering Journal, Composite Engineering, ACS Sustainable Chemistry and Engineering, and Carbohydrate Polymers. The application of sustainable fire-resistant polysaccharide-based composite aerogels spans the engineering and construction fields. The versatility in the fabrication and customization allows for seamless integration into diverse applications. The article concludes by emphasizing the significance of sustainable fire-resistant polysaccharide-based composite aerogels as a promising advancement in fire safety technology, combining sustainability, fire resistance, versatility, and mechanical strength to address critical challenges in the field. This review provides important insight into the research challenges, trends, and patterns of sustainable fire-resistant polysaccharide-based composite aerogel research worldwide.

Funder

the Hong Kong Polytechnic University

the Innovation and Technology Council of Hong Kong SAR

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3