Development of a Safety Heavy-Duty Vehicle Model Considering Unsafe Acts, Unsafe Conditions and Near-Miss Events Using Structural Equation Model

Author:

Pumpugsri Nattawut1ORCID,Rattanawong Wanchai2,Vongmanee Varin2

Affiliation:

1. Graduate School, University of the Thai Chamber of Commerce, 126/1 Vibhavadi Rangsit Road, Din Daeng, Bangkok 10400, Thailand

2. School of Engineering, University of the Thai Chamber of Commerce, 126/1 Vibhavadi Rangsit Road, Din Daeng, Bangkok 10400, Thailand

Abstract

The World Health Organization has revealed that Thailand ranks first in Asia with regard to the region’s road traffic death rate. Due to the growth in the domestic economy and demands in logistics, traffic congestion regularly occurs and brings higher risks to transportation, resulting in a constant increase in the accident rate involving heavy-duty vehicles (HDVs), with a tendency to escalate in the future. To prevent its occurrence and solve the problem, this research aims to present a “Safety HDV Model” based on four dimensions, namely, driver behaviors, unsafe roadway environment, types of vehicles and near-miss events, which are all considered as causes of accidents. In this study, the researchers use the Delphi method to obtain a consensus from experts in logistics and safety from both public and private organizations, and then they define indicators and assess the complex dimensions. Based on the consensus, the researchers find 4 dimensions, 15 factors and 55 indicators with a high level of consensus at the Kendall’s coefficient of concordance (W) of 0.402 and P less than 0.001 to be relevant to safety in logistics. To estimate the influences among dimensions, the researchers apply a structural equation model and find that both absolute fit indices and incremental fit indices demonstrate good fit, with a CMIN/DF of 1.90, RMSEA of 0.048, GFI of 0.95, AGFI of 0.92 and RMR of 0.032 for the absolute fit indices and NFI of 0.97, CFI of 0.98, TLI of 0.98 and IFI of 0.98 for the incremental fit indices. As the model is consistent with data and variables, it is considered to be valid to be adopted by responsible authorities to improve unsafe roadway environments and behaviors of HDV drivers. As the data in the model can be altered by location, the model can be utilized as a tool in strategic planning and management to prevent accidents in each area of the country in the future.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Telematics and AI Technology to Reduce Road Accidents for Heavy-Duty Vehicles;2023 27th International Computer Science and Engineering Conference (ICSEC);2023-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3