Ni-Doped Ordered Nanoporous Carbon Prepared from Chestnut Wood Tannins for the Removal and Photocatalytic Degradation of Methylene Blue

Author:

Bello Ruby,Rodríguez-Aguado Elena,Smith Victoria A.,Grachev DmitryORCID,Castellón Enrique RodríguezORCID,Bashkova SvetlanaORCID

Abstract

In this work, Ni-doped ordered nanoporous carbon was prepared by a simple and green one-pot solvent evaporation induced self-assembly process, where chestnut wood tannins were used as a precursor, Pluronic® F-127 as a soft template, and Ni2+ as a crosslinking agent and catalytic component. The prepared carbon exhibited a 2D hexagonally ordered nanorod array mesoporous structure with an average pore diameter of ~5 nm. Nickel was found to be present on the surface of nanoporous carbon in the form of nickel oxide, nickel hydroxide, and metallic nickel. Nickel nanoparticles, with an average size of 13.1 nm, were well dispersed on the carbon surface. The synthesized carbon was then tested for the removal of methylene blue under different conditions. It was found that the amount of methylene blue removed increased with increasing pH and concentration of carbon but decreased with increasing concentration of methylene blue. Furthermore, photocatalytic tests carried out under visible light illumination showed that purple light had the greatest effect on the methylene blue adsorption/degradation, with the maximum percent degradation achieved at ~4 h illumination time, and that the percent degradation at lower concentrations of methylene blue was much higher than that at higher concentrations. The adsorption/degradation process exhibited pseudo second-order kinetics and strong initial adsorption, and the prepared carbon showed high magnetic properties and good recyclability.

Funder

Junta de Andalucía, Consejería de Transformación Económica, Industria, Conocimiento y Universidades

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3