Performance Analysis of On-Demand Scheduling with and without Network Coding in Wireless Broadcast

Author:

Ali G. G. Md. Nawaz,Lee Victor C.S.,Meng Yuxuan,Chong Peter H. J.,Chen Jun

Abstract

On-demand broadcast is a scalable approach to disseminating information to a large population of clients while satisfying dynamic needs of clients, such as in vehicular networks. However, in conventional broadcast approaches, only one data item can be retrieved by clients in one broadcast tick. To further improve the efficiency of wireless bandwidth, in this work, we conduct a comprehensive study on incorporating network coding with representative on-demand scheduling algorithms while preserving their original scheduling criteria. In particular, a graph model is derived to maximize the coding benefit based on the clients’ requested and cached data items. Furthermore, we propose a heuristic coding-based approach, which is applicable for all the on-demand scheduling algorithms with low computational complexity. In addition, based on various application requirements, we classify the existing on-demand scheduling algorithms into three groups—real-time, non-real-time and stretch optimal. In view of different application-specific objectives, we implement the coding versions of representative algorithms in each group. Extensive simulation results conclusively demonstrate the superiority of coding versions of algorithms against their non-coding versions on achieving their respective scheduling objectives.

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3