Optimal Resilience Enhancement of Water Distribution Systems

Author:

Lorenz Imke-SophieORCID,Pelz Peter

Abstract

Water distribution systems (WDSs) as critical infrastructures are subject to demand peaks due to daily consumption fluctuations, as well as long term changes in the demand pattern due to increased urbanization. Resilient design of water distribution systems is of high relevance to water suppliers. The challenging combinatorial problem of high-quality and, at the same time, low-cost water supply can be assisted by cost-benefit optimization to enhance the resilience of existing main line WDSs, as shown in this paper. A Mixed Integer Linear Problem, based on a graph-theoretical resilience index, is implemented considering WDS topology. Utilizing parallel infrastructures, specifically those of the urban transport network and the water distribution network, makes allowances for physical constraints, in order to adjust the existing WDS and to enhance resilience. Therefore, decision-makers can be assisted in choosing the optimal adjustment of WDS depending on their investment budget. Furthermore, it can be observed that, for a specific urban structure, there is a convergence of resilience enhancement with higher costs. This cost-benefit optimization is conducted for a real-world main line WDS, considering also the limitations of computational expenses.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference29 articles.

1. Council Directive 2008/114/EC on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection;Off. J. Eur. Union,2008

2. World Urbanization Prospects: The 2018 Revision—Key Facts,2018

3. Asset Management for Urban Wastewater Pipeline Networks

4. The United Nations World Water Development Report 2019—Leaving No One Behind,2019

5. Terminology on Disaster Risk Reduction,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3