Spatial Analysis of Land Subsidence in the San Luis Potosi Valley Induced by Aquifer Overexploitation Using the Coherent Pixels Technique (CPT) and Sentinel-1 InSAR Observation

Author:

Navarro-Hernández María InésORCID,Tomás RobertoORCID,Lopez-Sanchez Juan M.ORCID,Cárdenas-Tristán AbrahamORCID,Mallorquí Jordi J.ORCID

Abstract

The San Luis Potosi metropolitan area has suffered considerable damage from land subsidence over the past decades, which has become visible since 1990. This paper seeks to evaluate the effects of groundwater withdrawal on land subsidence in the San Luis Potosi Valley and the development of surface faults due to the differential compaction of sediments. For this purpose, we applied the Coherent Pixels Technique (CPT), a Persistent Scatterer Interferometry (PSI) technique, using 112 Sentinel-1 acquisitions from October 2014 to November 2019 to estimate the deformation rate. The results revealed that the deformation areas in the municipality of Soledad de Graciano Sánchez mostly exhibit subsidence values between −1.5 and −3.5 cm/year; whereas in San Luis Potosi these values are between −1.8 and −4.2 cm/year. The PSI results were validated by five Global Navigation Satellite System (GNSS) benchmarks available, providing a data correlation between the results obtained with both techniques of 0.986. This validation suggests that interferometric derived deformations agree well with results obtained from GNSS data. The strong relationship between trace fault, land subsidence,e and groundwater extraction suggests that groundwater withdrawal is resulting in subsidence induced faulting, which follows the pattern of structural faults buried by sediments.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3