Spatiotemporal Variation in Extreme Precipitation in Beijiang River Basin, Southern Coastal China, from 1959 to 2018

Author:

Liu Zhanming,Yang HongORCID,Wei Xinghu,Liang Zhaoxiong

Abstract

Extreme precipitation events have caused serious impacts on natural ecosystem and human society and have attracted increasing attention in recent years. IPCC AR6 WG I report highlighted a lack of conclusive consensus on the change trend of extreme precipitation in some basins and variation (increase or decrease) between regions. Based on seven precipitation indexes defined by ETCCDI, using daily precipitation data observed by 18 national reference meteorological stations in China during 1959–2018, this study analysed spatiotemporal variation trend of extreme precipitation in the Beijiang River Basin, Southern Coastal China, in recent 60 years, using Mann–Kendall (M-K) trend test, coefficient of variation, and continuous wavelet transformation. M-K test results showed that there were mutations in all seven precipitation indexes, and mutation points were mainly concentrated in two periods (1986–1991 and 2005–2010). The change range of each index after mutation was generally greater than that before mutation. Continuous wavelet transformation showed that each indicator had a significant oscillation period of 2–4 year in most time domains. The southeastern part of the basin (Fogang and Qingyuan) was the center of extremely heavy precipitation, and most precipitation indexes decreased from this area to the surrounding area. As far as the basin as a whole was concerned, consecutive wet days (CWD) declined significantly (passing 0.05 of confidence test), and there was a significantly positive correlation between annual distribution of R95ds and monthly precipitation (p < 0.001). The research results expand our understanding of regional water cycle and extreme climate change, guide the allocation and management of water resources related to regional industrial and agricultural activities, and provide reference for disaster prevention and mitigation.

Funder

Youth Fund of Humanistic and Social Sciences of the Ministry of Education of PRC in 2017

Foshan University Interdisciplinary Program in Art and Science

Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

Foshan University Lingnan Visiting Professor scheme

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3