Abstract
The growing need for deep-sea biological research and environmental monitoring has expanded the demand for benthic landers. Compared with remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs), benthic landers can reduce overall operation cost and also possess longer endurance. Configuring a suitable descent velocity is important for benthic lander designs, helping them avoid retrieval failure and improve sea trial efficiencies. In this study, an effective scheme for the configuration and optimization of a self-developed benthic lander was outlined. First, the structural characteristics of the benthic lander were analyzed, and then a dynamic model was established. Second, the hydrodynamic coefficients of the benthic lander during its descent process were calculated using computational fluid dynamics (CFD) methods. Third, the MATLAB Simulink simulation environment was used to solve the dynamic model, and then the multi-objective optimization algorithm was introduced for the optimization design. Finally, the model was validated based on sea trial data, which demonstrated that the designed configuration and optimization scheme were correct and efficient. Collectively, this work provides a useful reference for the rational configuration and practical application of benthic landers.
Funder
High-Tech Research and Development Program of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献