Design of Control System for Multistage Distillation Seawater Desalination Device Driven by Photovoltaic-Thermal

Author:

Yan Jiaqi,Qiu Chengjun,Wang Yuangan,Wu NingORCID,Qu Wei,Zhuang Yuan,Yan Guohui,Wang Ping,Zhang Ruoyu,Yan Yirou,Deng Ruonan,Luo Jiuqiang,Gao Jiaqi,Wu Yuxuan

Abstract

This research proposes a seawater desalination system driven by photovoltaic and solar thermal energy for remote regions such as islands and seaside villages where fresh water is not accessible. The performance of this system is demonstrated through experiments, and the main concerns are the output of the photovoltaic power generation system, power quantity, water yield, and the loads under different solar irradiance and temperature. In this system, a PLC is used as the controller to adjust the water pump by the collection and processing of sensor data. A load switching time system is designed to select different operating schemes under different environments in order to save energy. The control method of this system is developed to ensure that the photovoltaic power generation system does not undervoltage while maintaining the normal operation of the desalination system. An improved Perturbation and Observation (P&O) algorithm is also proposed as a new Maximum Point Power Tracking (MPPT) method to solve the problem of misjudgment and oscillation after tracking the maximum power point (MPP) in the traditional P&O algorithm. The simulation test in the MATLAB/Simulink environment shows that when external irradiance changes, the improved P&O algorithm can track the MPP faster than the traditional P&O algorithm, and the amplitude of oscillation on the MPP is smaller. The hardware experiments show that this system can operate stably and flexibly, and it is capable of producing 5.18 kWh of electric energy and 335.81 kg of freshwater per day. The maximum yield of the unit can reach 565.75 kg per day and the maximum daily power generation is 8.12 kWh.

Funder

Scientific Research Foundation for Advanced Talents of Beibu Gulf University

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference119 articles.

1. Water resources and seawater desalination technology in Chinese islands;Song;Ocean Dev. Manag.,2016

2. Uninhabited islands: Their impact on the ownership of the oceans’ resources;Brooks;Ocean Dev. Int. Law,1983

3. Application of Membrane Distillation for desalting brines from thermal desalination plants;Adham;Desalination,2013

4. Performance analysis in stepped solar still for effluent desalination;Velmurugan;Energy,2009

5. Enhancement of single solar still integrated with solar dishes: An experimental approach;Kabeel;Energy Convers. Manag.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3