Adequacy of Near Real-Time Satellite Precipitation Products in Driving Flood Discharge Simulation in the Fuji River Basin, Japan

Author:

Zhou LiORCID,Rasmy Mohamed,Takeuchi KuniyoshiORCID,Koike Toshio,Selvarajah Hemakanth,Ao Tianqi

Abstract

Flood management is an important topic worldwide. Precipitation is the most crucial factor in reducing flood-related risks and damages. However, its adequate quality and sufficient quantity are not met in many parts of the world. Currently, near real-time satellite precipitation products (NRT SPPs) have great potential to supplement the gauge rainfall. However, NRT SPPs have several biases that require corrections before application. As a result, this study investigated two statistical bias correction methods with different parameters for the NRT SPPs and evaluated the adequacy of its application in the Fuji River basin. We employed Global Satellite Mapping of Precipitation (GSMaP)-NRT and Integrated Multi-satellitE Retrievals for GPM (IMERG)-Early for NRT SPPs as well as BTOP model (Block-wise use of the TOPMODEL (Topographic-based hydrologic model)) for flood runoff simulation. The results showed that the corrected SPPs by the 10-day ratio based bias correction method are consistent with the gauge data at the watershed scale. Compared with the original SPPs, the corrected SPPs improved the flood discharge simulation considerably. GSMaP-NRT and IMERG-Early have the potential for hourly river-flow simulation on a basin or large scale after bias correction. These findings can provide references for the applications of NRT SPPs in other basins for flood monitoring and early warning applications. It is necessary to investigate the impact of number of ground observation and their distribution patterns on bias correction and hydrological simulation efficiency, which is the future direction of this study.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3