Chaos-Based Synchronized Dynamic Keys and Their Application to Image Encryption with an Improved AES Algorithm

Author:

Lin Chih-Hsueh,Hu Guo-Hsin,Chan Che-Yu,Yan Jun-JuhORCID

Abstract

This study aimed to design chaos-based synchronized dynamic keys and develop an improved chaos-based advanced encryption standard (AES) algorithm with the proposed synchronized random keys. First, based on sliding mode control (SMC) technology, a rippling control scheme was introduced to guarantee the synchronization between master–slave discrete chaotic systems. Under the synchronization, the same dynamic random chaos signals could be simultaneously obtained at the transmitter and receiver in communication systems. Then, a novel modified AES cryptosystem with dynamic random keys based on chaos synchronization was presented. In a traditional AES cryptosystem, a static key is used, and it must be exchanged in advance and confirmed to be safely kept. However, in the proposed design, by introducing the synchronization technology of chaotic systems, the static key becomes dynamic and random, and it does not need to be kept or transmitted in open channels. Consequently, the disadvantage of key storage could be eliminated and the security of encryption could be improved. Finally, the developed chaos-based AES (CAES) algorithm has been applied to construct a novel image encryption algorithm. The statistical analysis, histogram, information entropy, and correlation indexes have been calculated and analyzed through simulation experiments in order to demonstrate the capability and improvement of this presented CAES cryptosystem.

Funder

the Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. A Hyperchaotic Color Image Encryption Algorithm and Security Analysis

2. Algorithm of image encrypting based on Logistic chaotic system;Zhang;Appl. Res. Comput.,2015

3. An image encryption algorithm based on hyper-chaos system and DNA plane;Liu;J. Comput.,2018

4. A family of new complex number chaotic maps based image encryption algorithm

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3