Abstract
5G networks have an efficient effect in energy consumption and provide a quality experience to many communication devices. Device-to-device communication is one of the key technologies of 5G networks. Internet of Things (IoT) applying 5G infrastructure changes the application scenario in many fields especially real-time communication between machines, data, and people. The 5G network has expanded rapidly around the world including in healthcare. Telemedicine provides long-distance medical communication and services. Patient can get help with ambulatory care or other medical services in remote areas. 5G and IoT will become important parts of next generation smart medical healthcare. Telemedicine is a technology of electronic message and telecommunication related to healthcare, which is implemented in public networks. Privacy issue of transmitted information in telemedicine is important because the information is sensitive and private. In this paper, 5G-based federated anonymous identity management for medical privacy protection is proposed, and it can provide a secure way to protect medical privacy. There are some properties below. (i) The proposed scheme provides federated identity management which can manage identity of devices in a hierarchical structure efficiently. (ii) Identity authentication will be achieved by mutual authentication. (iii) The proposed scheme provides session key to secure transmitted data which is related to privacy of patients. (iv) The proposed scheme provides anonymous identities for devices in order to reduce the possibility of leaking transmitted medical data and real information of device and its owner. (v) If one of devices transmit abnormal data, proposed scheme provides traceability for servers of medical institute. (vi) Proposed scheme provides signature for non-repudiation.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献