Combined Electromagnetic and Mechanical Design Optimization of Interior Permanent Magnet Rotors for Electric Vehicle Drivetrains

Author:

Zhang Guanhua1,Jewell Geraint Wyn1ORCID

Affiliation:

1. Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, UK

Abstract

In many high-speed electrical machines, centrifugal forces within the rotor can be first-order constraints on electromagnetic optimization. This can be particularly acute in interior permanent magnet (IPM) machines in which magnets are usually retained entirely by the rotor core with no additional mechanical containment. This study investigates the nature of the trade-off between mechanical and electromagnetic requirements within the context of an eight-pole, 100 kW IPM machine with a base speed of 4000 rpm and an extended speed range up to 12,000 rpm. A series of mechanical and electromagnetic models are used to estimate the level of shaft interference, mechanical stress in critical regions of the rotor and the impact of various features and dimensions within the machine on electromagnetic torque. A systematic exploration of the design space is undertaken for rotor diameters from 120 mm to 180 mm, with optimal designs in terms of torque per unit length established at each diameter while meeting the constraints imposed on mechanical stress. The final preferred design has a rotor of 165 mm and an axial length of 103 mm long with a fractional slot winding in a 30-slot stator. The overall machine has an active mass of 42.3 kg, which corresponds to ~2.4 kW/kg. This paper describes the optimization study in detail and draws on the results to explore the nature of the design trade-offs in such rotors and the impact of core properties.

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3