Graphene-Based Electrodes for Silicon Heterojunction Solar Cell Technology

Author:

Torres IgnacioORCID,Fernández SusanaORCID,Fernández-Vallejo Montserrat,Arnedo IsraelORCID,Gandía José Javier

Abstract

Transparent conductive electrodes based on graphene have been previously proposed as an attractive candidate for optoelectronic devices. While graphene alone lacks the antireflectance properties needed in many applications, it can still be coupled with traditional transparent conductive oxides, further enhancing their electrical performance. In this work, the effect of combining indium tin oxide with between one and three graphene monolayers as the top electrode in silicon heterojunction solar cells is analyzed. Prior to the metal grid deposition, the electrical conductance of the hybrid electrodes was evaluated through reflection-mode terahertz time-domain spectroscopy. The obtained conductance maps showed a clear electrical improvement with each additional graphene sheet. In the electrical characterization of the finished solar cells, this translated to a meaningful reduction in the series resistance and an increase in the devices’ fill factor. On the other hand, each additional sheet absorbs part of the incoming radiation, causing the short circuit current to simultaneously decrease. Consequently, additional graphene monolayers past the first one did not further enhance the efficiency of the reference cells. Ultimately, the increase obtained in the fill factor endorses graphene-based hybrid electrodes as a potential concept for improving solar cells’ efficiency in future novel designs.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Gobierno de Navarra

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3