Abstract
The aim of this study was to examine the synthesis of novel molecularly imprinted polymer (MIP)-coated polythiophene and poly(3-methylthiophene) solid-phase microextraction fibers using the direct electropolymerization method. Synthesized SPME fibers were characterized with the use of various physicochemical instrumental techniques. MIP-SPME coatings were successfully applied to carry out the selective extraction of selected antibiotic drugs (amoxicillin, cefotaxime, metronidazole) and their metabolites (amoxycilloic acid, amoxicillin diketopiperazine, desacetyl cefotaxime, 3-desacetyl cefotaxime lactone, hydroxymetronidazole). Solid-phase microextraction parameters for the simultaneous determination and identification of target compounds were optimized using the central composite design (CCD), and they accounted for 5–15 min for desorption time, 3–10 for the pH of the desorption solvent, and 30–100 μL for the volume of the desorption solvent. High-performance liquid chromatography and mass spectrometry (MS) detectors such as quadrupole time-of-flight (Q-TOF MS) and triple quadrupole (QqQ MS) were applied to determine and to identify selected antibiotic drugs and their metabolites. The MIP-coated SPME are suitable for the selective extraction of target compounds in biological samples from patients in intensive care units.
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献