A Clustering-Based Hybrid Support Vector Regression Model to Predict Container Volume at Seaport Sanitary Facilities

Author:

Ruiz-Aguilar Juan JesúsORCID,Moscoso-López José Antonio,Urda DanielORCID,González-Enrique JavierORCID,Turias Ignacio

Abstract

An accurate prediction of freight volume at the sanitary facilities of seaports is a key factor to improve planning operations and resource allocation. This study proposes a hybrid approach to forecast container volume at the sanitary facilities of a seaport. The methodology consists of a three-step procedure, combining the strengths of linear and non-linear models and the capability of a clustering technique. First, a self-organizing map (SOM) is used to decompose the time series into smaller clusters easier to predict. Second, a seasonal autoregressive integrated moving averages (SARIMA) model is applied in each cluster in order to obtain predicted values and residuals of each cluster. These values are finally used as inputs of a support vector regression (SVR) model together with the historical data of the cluster. The final prediction result integrates the prediction results of each cluster. The experimental results showed that the proposed model provided accurate prediction results and outperforms the rest of the models tested. The proposed model can be used as an automatic decision-making tool by seaport management due to its capacity to plan resources in advance, avoiding congestion and time delays.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3