Modeling, Simulation, and Cruise Characteristics of Wingtip-Jointed Composite Aircraft

Author:

Liu Dongxu,Xie Changchuan,Hong Guanxin,An ChaoORCID

Abstract

In this paper, multibody dynamic modeling and a simulation method for the wingtip-jointing process of a new-concept composite aircraft system are investigated. When the wingtips of two aircraft are jointed, the resultant wingtip-jointed aircraft is regarded as variable-geometry multiple rigid bodies, and a seven-degree-of-freedom non-linear dynamic model is established by mathematical derivation. The slip-meshing method is adopted to analyze the unsteady aerodynamic influence. We also present specific aerodynamic database acquisition methods under the quasi-steady assumption. Based on this, the simulation results indicate that the longitudinal and lateral movements are highly jointed and complex. A new composite aircraft system is investigated, in order to meet the balance requirement. With the lift–drag ratio (K) considered, the piecewise cubic Hermite interpolation (PCHIP) method, with a sufficient sample size, was utilized to help the cruise strategy optimization analysis under fixed altitude and speed conditions. Meanwhile, distribution of cruise characteristics with different sampling values of composite flight characteristic parameters were also analyzed. The research results can be used as a reference for new-concept composite aircraft model establishment, simulation, and multibody dynamic characteristic investigation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

1. United States Air Force Museum Guidebook,1975

2. Project Tom-Tom;Miller;Aerophile,1977

3. Flying Aircraft Carriers of the USAF: Project Ficon;Lockett,2008

4. Flying Aircraft Carriers of the USAF: Wing Tip Coupling;Lockett,2009

5. Aircraft dynamics, wind tunnel testing, and CFD flow visualization of two linked UAVs flying at close proximity;Cuji;Proc. SPIE,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3