Author:
Bewernitz Mark A.,Lovett Archana C.,Gower Laurie B.
Abstract
Micron-sized core-shell particles consisting of a calcium carbonate (CaCO3) mineral shell and a fluidic core were generated using a biomimetic approach, for the purpose of use as biodegradable microcapsules for release of active agents. Dinoflagellate cysts, unicellular organisms which deposit a protective hard mineral shell around their soft and fluidic cellular interior, served as our inspiration. Using the biomimetic polymer-induced liquid-precursor (PILP) mineralization process, calcium carbonate coatings were deposited on charged emulsion droplets and liposomes. Light microscopy, scanning electron microscopy, polarized light microscopy, X-ray diffraction, and confocal fluorescence microscopy were used to demonstrate that smooth CaCO3 mineral coatings can be deposited onto the high curvature surfaces of emulsions and liposomes to yield micron-sized microcapsules for the effective entrapment of both hydrophobic and hydrophilic active agents. These biodegradable and biocompatible CaCO3 microcapsules are novel systems for producing a powdered form of fluid-containing capsules for storage and transport of pharma/chemical agents. They may be used in lieu of, or in conjunction with, existing microcapsule delivery approaches, as well as providing a convenient foundation for which polymeric coatings could be further applied, allowing for more complex targeting and/or chemical-release control.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献