Detecting and Measuring Defects in Wafer Die Using GAN and YOLOv3

Author:

Chen Ssu-HanORCID,Kang Chih-Hsiang,Perng Der-Baau

Abstract

This research used deep learning methods to develop a set of algorithms to detect die particle defects. Generative adversarial network (GAN) generated natural and realistic images, which improved the ability of you only look once version 3 (YOLOv3) to detect die defects. Then defects were measured based on the bounding boxes predicted by YOLOv3, which potentially provided the criteria for die quality sorting. The pseudo defective images generated by GAN from the real defective images were used as the training image set. The results obtained after training with the combination of the real and pseudo defective images were 7.33% higher in testing average precision (AP) and more accurate by one decimal place in testing coordinate error than after training with the real images alone. The GAN can enhance the diversity of defects, which improves the versatility of YOLOv3 somewhat. In summary, the method of combining GAN and YOLOv3 employed in this study creates a feature-free algorithm that does not require a massive collection of defective samples and does not require additional annotation of pseudo defects. The proposed method is feasible and advantageous for cases that deal with various kinds of die patterns.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. Integrated applications of inspection data in the semiconductor manufacturing environment;Tobin,2001

2. A neural-network approach for semiconductor wafer post-sawing inspection

3. Novelty detection for the inspection of light-emitting diodes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3