Author:
Park JaeHyung,Lee JongHyun,Kim SiJin,Lee InSoo
Abstract
With the emergence of problems on environmental pollutions, lithium batteries have attracted considerable attention as an efficient and nature-friendly alternative energy storage device owing to their advantages, such as high power density, low self-discharge rate, and long life cycle. They are widely used in numerous applications, from everyday items, such as smartphones, wireless vacuum cleaners, and wireless power tools, to transportation means, such as electric vehicles and bicycles. In this paper, the state of charge (SOC) of each cell of the lithium battery pack was estimated in real time using two types of neural networks: Multi-layer Neural Network (MNN) and Long Short-Term Memory (LSTM). To determine the difference in the SOC estimation performance under various conditions, the input values were compared using 2, 6, and 8 input values, and the difference according to the use of temperature variable data was compared, and finally, the MNN and LSTM. The differences were compared. Real-time SOC was estimated using the method with the lowest error rate.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献