Abstract
Industrial robots are regularly being employed for machining tasks. As a key machining parameter, dynamic stiffness has a significant influence on robotic machining performance. This paper examines two experimental approaches for obtaining the dynamic stiffness of an industrial robot. One approach is based on experimental modal analysis. The other approach is a direct calculation with the acquisition of excitation forces and vibration displacement. Different excitation frequencies are planned to stimulate an industrial robot. The dynamic stiffnesses obtained by the two approaches are thoroughly evaluated. Large deviation appears between the dynamic stiffness measured by two approaches. The factors that result in variations in the measurements are discussed.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献