Nonlinear Dynamic Analysis of Lifting Mechanism of an Electric Overhead Crane during Emergency Braking

Author:

Niu Congmin,Ouyang HuajiangORCID

Abstract

Mechanical brakes are essential for electric cranes when emergency braking occurs. This paper presents, for the first-time, a dynamic response analysis of emergency braking events of electrical cranes that has modelled crane components as flexible and rigid bodies. Based on the Hamilton principle, a nonlinear and non-smooth dynamic model is derived from a modified Lagrangian function and the virtual work of non-conservative forces. The dynamic responses of a 32-ton overhead travelling crane during the emergency braking process of its lifting mechanism with two service brakes determined by simulating realistic operations. The numerical results show that the loads acting on components of the crane during the braking process depend on the braking capacity and the action time of the mechanical brakes, as well as the magnitude and the initial position of the payload. When a dual-brake scheme of the lifting mechanism is adopted, the maximum load of the high-speed links and the maximum thermal power of the mechanical brake appear in the emergency braking process when one of the two brakes fails to work. In addition, it is found to be a false belief that the lower the initial speed, the lower the maximum loads acting on components of cranes become during the braking process.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. EN ISO13850 Safety of Machinery Emergency Stop Principles for Design,2015

2. Determination of temperature and wear during braking

3. DIN 15434-1-1989 Power Transmission Engineering—Principles for Drum- and Disc Brakes, Calculation,1989

4. Friction mechanism in industrial brakes

5. Preparation of high friction brake shoe material and its tribological behaviors during emergency braking in ultra-deep coal mine hoist

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3