SiO2/C Composite as a High Capacity Anode Material of LiNi0.8Co0.15Al0.05O2 Battery Derived from Coal Combustion Fly Ash

Author:

Jumari Arif,Yudha Cornelius Satria,Widiyandari Hendri,Lestari Annisa Puji,Rosada Rina Amelia,Santosa Sigit Puji,Purwanto AgusORCID

Abstract

Abundantly available SiO2 (silica) has great potential as an anode material for lithium-ion batteries because it is inexpensive and flexible. However, silicon oxide-based anode material preparation usually requires many complex steps. In this article, we report a facile method for preparing a SiO2/C composite derived from coal combustion fly ash as an anode material for Li-ion batteries. SiO2 was obtained by caustic extraction and HCl precipitation. Then, the SiO2/C composite was successfully obtained by mechanical milling followed by heat treatment. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Electrochemical properties were tested using an 18650 cylindrical cell utilizing LiNi0.8Co0.15Al0.05O2 (NCA) as the counter electrode. Based on the obtained results, the physiochemical characteristics and electrochemical performance, it was determined that SiO2/C composites were greatly affected by the temperature of heat treatment. The best result was obtained with the SiO2 content of 10% w/w, heating temperature of 500 °C, initial specific discharge capacity of 586 mAh g−1 at 0.1 C (1 C = 378 mAh g−1), and reversible capacity of 87% after 20 cycles. These results confirmed that the obtained materials had good initial discharge capacity, cyclability, high performance, and exhibited great potential as an anode material for LIBs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3