Performing Calibration of Transmittance by Single RGB-LED within the Visible Spectrum

Author:

Carreres-Prieto DanielORCID,García Juan T.ORCID,Cerdán-Cartagena Fernando,Suardiaz-Muro JuanORCID

Abstract

Spectrophotometry has proven to be an effective non-invasive technique for the characterization of the pollution load of sewer systems, enabling compliance with new environmental protection regulations. This type of equipment has costs and an energy consumption which make it difficult to place it inside a sewer network for real-time and massive monitoring. These shortcomings are mainly due to the use of incandescent lamps to generate the working spectrum as they often require the use of optical elements, such as diffraction gratings, to work. The search for viable alternatives to incandescent lamps is key to the development of portable equipment that is cheaper and with a lower consumption that can be used in different points of the sewer network. This research work achieved the following results in terms of the measured samples: First, the development a calibration procedure that enables the use of RGB-LED technology as a viable alternative to incandescent lamps, within the range of 510 to 645 nm, with high accuracy. Secondly, demonstration of a simple method to model the transmittance value of a specific wavelength without the need for optical elements, achieving a cost-effective equipment. Thirdly, it provides a simple method to obtain the transmittance based on the combination of RGB colors. Finally its viability is demonstrated for the spectral analysis of wastewater.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference46 articles.

1. Compliance with the Urban Waste Water Treatment Directive: European Union City Responses in Relation to Combined Sewer Overflow Discharges;Ward,2009

2. Urban Runoff Characteristics in Combined Sewer Overflows (CSOs): Analysis of Storm Events in Southeastern Spain

3. Synthetic Pollutograph by Prediction Indices: An Evaluation in Several Urban Sub-Catchments

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3