Indoor Positioning with CNN and Path-Loss Model Based on Multivariable Fingerprints in 5G Mobile Communication System

Author:

Wang Yuhang,Zhao KunORCID,Zheng Zhengqi,Ji Wenqing,Huang Shuai,Ma Difeng

Abstract

Many application scenarios require indoor positioning in fifth generation (5G) mobile communication systems in recent years. However, non-line of sight and multipath propagation lead to poor accuracy in a traditionally received signal strength-based fingerprints positioning system. In this paper, we propose a positioning method employing multivariable fingerprints (MVF) composed of measurements based on secondary synchronization signals (SSS). In the fingerprint matching, we use MVF to train the convolutional neural network (CNN) location classification model. Moreover, we utilize MVF to train the path-loss model, which indicates the relationship between the distance and the measurement. Then, a hybrid positioning model combining CNN and path-loss model is proposed to optimize the overall positioning accuracy. Experimental results show that all three positioning algorithms based on machine learning with MVF achieve accuracy improvement compared with that of Reference Signal Receiving Power (RSRP)-only fingerprint. CNN achieves best performance among three positioning algorithms in two experimental environments. The average positioning error of hybrid positioning model is 1.47 m, which achieves 9.26% accuracy improvement compared with that of CNN alone.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3