Deep Learning-Based State-of-Health Estimation of Proton-Exchange Membrane Fuel Cells under Dynamic Operation Conditions

Author:

Zhang Yujia1,Tang Xingwang1,Xu Sichuan1,Sun Chuanyu2ORCID

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

2. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China

Abstract

Proton-exchange membrane fuel cells (PEMFCs) play a crucial role in the transition to sustainable energy systems. Accurately estimating the state of health (SOH) of PEMFCs under dynamic operating conditions is essential for ensuring their reliability and longevity. This study designed dynamic operating conditions for fuel cells and conducted durability tests using both crack-free fuel cells and fuel cells with uniform cracks. Utilizing deep learning methods, we estimated the SOH of PEMFCs under dynamic operating conditions and investigated the performance of long short-term memory networks (LSTM), gated recurrent units (GRU), temporal convolutional networks (TCN), and transformer models for SOH estimation tasks. We also explored the impact of different sampling intervals and training set proportions on the predictive performance of these models. The results indicated that shorter sampling intervals and higher training set proportions significantly improve prediction accuracy. The study also highlighted the challenges posed by the presence of cracks. Cracks cause more frequent and intense voltage fluctuations, making it more difficult for the models to accurately capture the dynamic behavior of PEMFCs, thereby increasing prediction errors. However, under crack-free conditions, due to more stable voltage output, all models showed improved predictive performance. Finally, this study underscores the effectiveness of deep learning models in estimating the SOH of PEMFCs and provides insights into optimizing sampling and training strategies to enhance prediction accuracy. The findings make a significant contribution to the development of more reliable and efficient PEMFC systems for sustainable energy applications.

Funder

National Key R&D Program of China

State Scholarship Funding of CSC

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3