Enhanced Fenton Degradation of Tetracycline over Cerium-Doped MIL88-A/g-C3N4: Catalytic Performance and Mechanism

Author:

Eltaweil Abdelazeem S.12ORCID,Galal Amira M.2,Abd El-Monaem Eman M.2,Al Harby Nouf3ORCID,Batouti Mervette El2

Affiliation:

1. Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Ibra 400, Oman

2. Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21934, Egypt

3. Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia

Abstract

Since enormous amounts of antibiotics are consumed daily by millions of patients all over the world, tons of pharmaceutical residuals reach aquatic bodies. Accordingly, our study adopted the Fenton catalytic degradation approach to conquer such detrimental pollutants. (Ce0.33Fe) MIL-88A was fabricated by the hydrothermal method; then, it was supported on the surface of g-C3N4 sheets using the post-synthetic approach to yield a heterogeneous Fenton-like (Ce0.33Fe) MIL-88A/10%g-C3N4 catalyst for degrading the tetracycline hydrochloride drug. The physicochemical characteristics of the catalyst were analyzed using FT-IR, SEM-EDX, XRD, BET, SEM, and XPS. The pH level, the H2O2 concentration, the reaction temperature, the catalyst dose, and the initial TC concentration were all examined as influencing factors of TC degradation efficiency. Approximately 92.44% of the TC was degraded within 100 min under optimal conditions: pH = 7, catalyst dosage = 0.01 g, H2O2 concentration = 100 mg/L, temperature = 25 °C, and TC concentration = 50 mg/L. It is noteworthy that the practical outcomes revealed how the Fenton-like process and adsorption work together. The degradation data were well-inspected by first-order and second-order models to define the reaction rate. The synergistic interaction between the (Ce0.33Fe) MIL-88A/10%g-C3N4 components produces a continuous redox cycle of two active metal species and the electron-rich source of g-C3N4. The quenching test demonstrates that •OH is the primary active species for degrading TC in the H2O2–(Ce0.33Fe) MIL-88A/10%g-C3N4 system. The GC-MS spectrum elucidates the yielded intermediates from degrading the TC molecules.

Funder

Deanship of Graduate Studies and Scientific Research at Qassim University

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3