Simultaneous Effect of Diameter and Concentration of Multi-Walled Carbon Nanotubes on Mechanical and Electrical Properties of Cement Mortars: With and without Biosilica

Author:

Malumyan Suren A.1ORCID,Muradyan Nelli G.1ORCID,Kalantaryan Marine A.1,Arzumanyan Avetik A.1,Melikyan Yeghvard2ORCID,Laroze David3ORCID,Barseghyan Manuk G.1ORCID

Affiliation:

1. Faculty of Construction, National University of Architecture and Construction of Armenia, 105 Teryan Street, Yerevan 0009, Armenia

2. A.B. Nalbandyan Institute of Chemical Physics, NAS RA, 5/2P. Sevak Street, Yerevan 0014, Armenia

3. Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile

Abstract

In this work, the effect of multi-walled carbon nanotubes (MWCNT1, MWCNT2, and MWCNT3) with different outer diameters and specific surface areas on the mechanical and electrical properties of cement mortar have been investigated. Various concentrations of MWCNTs were used (0.05, 0.10, and 0.15%), the effective dispersion of which was carried out by an Ultrasonic machine (for 40 min with 160 W power and a 24 kHz frequency) using a surfactant. Composites have been processed with a biosilica content of 10% by weight of cement and without it. Compressive strength tests were carried out on days 7 and 28 of curing. The 7-day compressive strength of samples prepared without biosilica increased compared to the result of the control sample (6.4% for MWCNT1, 7.4% for MWCNT2, and 10.8% for MWCNT3), as did those using biosilica (6.7% in the case of MWCNT1, 29.2% for MWCNT2, and 2.1% for MWCNT3). Compressive strength tests of 28-day specimens yielded the following results: 21.7% for MWCNT1, 3.8% for MWCNT2, and 4.2% for MWCNT3 in the absence of biosilica and 8.5%, 12.6%, and 6.3% with biosilica, respectively. The maximum increase in compressive strength was observed in the composites treated with a 0.1% MWCNT concentration, while in the case of 0.05 and 0.15% concentrations, the compressive strengths were relatively low. The MWCNT-reinforced cement matrix obtained electrical properties due to the high electrical conductivity of these particles. The effect of MWCNT concentrations of 0.05, 0.10, and 0.15 wt% on the electrical properties of cement mortar, especially the bulk electrical resistivity and piezoresistive characteristics of cement mortar, was studied in this work. At a concentration of 0.05%, the lowest value of resistivity was obtained, and then it started to increase. The obtained results show that all investigated specimens have piezoresistive properties and that the measurements led to a deviation in fractional change in resistivity.

Funder

Higher Education and Science Committee of the Republic of Armenia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3