Abstract
The measurement of polarization and depolarization currents (PDC) based on time–domain response is an effective method for state assessment of cellulose insulation material in oil-immersed electrical equipment. However, the versatility of the data obtained at different temperatures is limited because of the temperature dependence of the PDC. In this respect, the universal conversion of PDC data at different temperatures is an essential aspect to improve the accuracy of the determination of insulating properties of cellulose materials immersed in the oil. Thus, an innovative temperature conversion method based on polarization time-varying current (PTC, obtained by multiplying the polarization current and time) is proposed in this article. In the current work, the PTC data at different temperatures are obtained from the oil-immersed cellulose pressboards with different moisture. Afterwards, the functional model based on the power series theory is used to simulate the PTC data, through which the coefficients of the power series are found related to the test temperature of the PTC and the moisture content (mc%) of the oil-immersed cellulose pressboards. Furthermore, the functional relationship among moisture, test temperatures, and the feature parameter calculated by these coefficients is established. Thus, the PTC data at various temperatures can be calculated by the established function. The potential application ability of the proposed method is verified by comparing the calculated results with the measured results obtained from the various samples.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献