Performance Assessment of Oil-Immersed Cellulose Insulator Materials Using Time–Domain Spectroscopy under Varying Temperature and Humidity Conditions

Author:

Lai Benhui,Yang ShichangORCID,Zhang HengORCID,Zhang YiyiORCID,Fan XianhaoORCID,Liu JiefengORCID

Abstract

The measurement of polarization and depolarization currents (PDC) based on time–domain response is an effective method for state assessment of cellulose insulation material in oil-immersed electrical equipment. However, the versatility of the data obtained at different temperatures is limited because of the temperature dependence of the PDC. In this respect, the universal conversion of PDC data at different temperatures is an essential aspect to improve the accuracy of the determination of insulating properties of cellulose materials immersed in the oil. Thus, an innovative temperature conversion method based on polarization time-varying current (PTC, obtained by multiplying the polarization current and time) is proposed in this article. In the current work, the PTC data at different temperatures are obtained from the oil-immersed cellulose pressboards with different moisture. Afterwards, the functional model based on the power series theory is used to simulate the PTC data, through which the coefficients of the power series are found related to the test temperature of the PTC and the moisture content (mc%) of the oil-immersed cellulose pressboards. Furthermore, the functional relationship among moisture, test temperatures, and the feature parameter calculated by these coefficients is established. Thus, the PTC data at various temperatures can be calculated by the established function. The potential application ability of the proposed method is verified by comparing the calculated results with the measured results obtained from the various samples.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3