Point-of-Care Disease Screening in Primary Care Using Saliva: A Biospectroscopy Approach for Lung Cancer and Prostate Cancer

Author:

Martin Francis L.12ORCID,Morais Camilo L. M.3ORCID,Dickinson Andrew W.2,Saba Tarek2,Bongers Thomas2,Singh Maneesh N.14,Bury Danielle1

Affiliation:

1. Biocel UK Ltd., Hull HU10 6TS, UK

2. Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK

3. Center for Education, Science and Technology of the Inhamuns Region, State University of Ceará, Tauá 63660-000, Brazil

4. Chesterfield Royal Hospital, Chesterfield Road, Calow, Chesterfield S44 5BL, UK

Abstract

Saliva is a largely unexplored liquid biopsy that can be readily obtained noninvasively. Not dissimilar to blood plasma or serum, it contains a vast array of bioconstituents that may be associated with the absence or presence of a disease condition. Given its ease of access, the use of saliva is potentially ideal in a point-of-care screening or diagnostic test. Herein, we developed a swab “dip” test in saliva obtained from consenting patients participating in a lung cancer-screening programme being undertaken in north-west England. A total of 998 saliva samples (31 designated as lung-cancer positive and 17 as prostate-cancer positive) were taken in the order in which they entered the clinic (i.e., there was no selection of participants) during the course of this prospective screening programme. Samples (sterile Copan blue rayon swabs dipped in saliva) were analysed using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. In addition to unsupervised classification on resultant infrared (IR) spectra using principal component analysis (PCA), a range of feature selection/extraction algorithms were tested. Following preprocessing, the data were split between training (70% of samples, 22 lung-cancer positive versus 664 other) and test (30% of samples, 9 lung-cancer positive versus 284 other) sets. The training set was used for model construction and the test set was used for validation. The best model was the PCA-quadratic discriminant analysis (QDA) algorithm. This PCA-QDA model was built using 8 PCs (90.4% of explained variance) and resulted in 93% accuracy for training and 91% for testing, with clinical sensitivity at 100% and specificity at 91%. Additionally, for prostate cancer patients amongst the male cohort (n = 585), following preprocessing, the data were split between training (70% of samples, 12 prostate-cancer positive versus 399 other) and test (30% of samples, 5 prostate-cancer positive versus 171 other) sets. A PCA-QDA model, again the best model, was built using 5 PCs (84.2% of explained variance) and resulted in 97% accuracy for training and 93% for testing, with clinical sensitivity at 100% and specificity at 92%. These results point to a powerful new approach towards the capability to screen large cohorts of individuals in primary care settings for underlying malignant disease.

Funder

North West Cancer Research

the Pathological Society of Great Britain and Ireland

the NIHR Manchester Biomedical Research Centre

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3