MT-FANet: A Morphology and Topology-Based Feature Alignment Network for SAR Ship Rotation Detection

Author:

Liu Qianqian1,Li Dong2,Jiang Renjie2ORCID,Liu Shuang2,Liu Hongqing3,Li Suqi2

Affiliation:

1. College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China

2. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

3. Chongqing Key Laboratory of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

In recent years, ship target detection in synthetic aperture radar (SAR) images has significantly progressed due to the rapid development of deep learning (DL). However, since only the spatial feature information of ship targets is utilized, the current DL-based SAR ship detection approaches cannot achieve a satisfactory performance, especially in the case of multiscale, rotations, or complex backgrounds. To address these issues, in this paper, a novel deep-learning network for SAR ship rotation detection, called a morphology and topology-based feature alignment network, is proposed which can better exploit the morphological features and inherent topological structure information. This network consists of the following three main steps: First, deformable convolution is introduced to improve the representational ability for irregularly shaped ship targets, and subsequently, a morphology and topology feature pyramid network is developed to extract inherent topological structure information. Second, based on the aforementioned features, a rotation alignment feature head is devised for fine-grained processing as well as aligning and distinguishing the features; to enable regression prediction of rotated bounding boxes; and to adopt a parameter-sharing mechanism to improve detection efficiency. Therefore, utilizing morphological and inherent topological structural information enables a superior detection performance to be achieved. Finally, we evaluate the effectiveness of the proposed method using the rotated ship detection dataset in SAR images (RSDD-SAR). Our method outperforms other DL-based algorithms with fewer parameters. The overall average precision is 90.84% and recall is 92.21%. In inshore and offshore scenarios, our method performs well for the detection of multi-scale and rotation-varying ship targets, with its average precision reaching 66.87% and 95.72%, respectively.

Funder

National Natural Science Foundation of China

Basic Scientific Research Project

Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education

Sichuan Science and Technology Program

Opening Project of the Guangxi Wireless Broadband Communication and Signal Processing Key Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3