Metabolomics in Hyperuricemia and Gout

Author:

Li Rui12ORCID,Liang Ningning23ORCID,Tao Yongzhen2,Yin Huiyong12345ORCID

Affiliation:

1. School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China

2. CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China

3. University of Chinese Academy of Sciences, CAS, Beijing 100049, China

4. Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai 200025, China

5. Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China

Abstract

Urate is one of the key metabolites of purine metabolism, and the overproduction of urate in the liver or decreased excretion in the kidney in humans may lead to elevated levels of urate in the circulation, termed hyperuricemia (HU). The formation of monosodium urate (MSU) crystals in the joint or surrounding tissues may trigger inflammatory responses and gout attacks, which is the most common inflammatory arthritis. In addition to gout, HU has also been associated with many other metabolic diseases, such as cardiovascular disease, obesity, diabetes, fatty liver diseases, kidney diseases, hypertension, and various cancers. Overwhelming evidence indicates that HU and gout lead to systematic metabolic alterations underlying these metabolic disorders. As one of the most powerful omics techniques, metabolomics systematically analyzes all small-molecule metabolites in a biological system that directly reflect the physiological and pathological conditions. In recent years, metabolomics has been increasingly employed in clinical and experimental research in HU and gout. Emerging studies have developed predictive models to differentiate HU from gout based on metabolomics and machine-learning algorithms. In this review, we systematically summarize recent advances in metabolomic research in gout and HU in animal and human clinical studies. A comprehensive understanding of systemic metabolic changes caused by HU and gout may provide unprecedented insights into the pathological mechanisms in HU, gout, and related metabolic diseases, which may have a profound impact on the prevention, diagnosis, and treatment of HU and gout.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3