Surface Functionalization of Biochar from Oil Palm Empty Fruit Bunch through Hydrothermal Process

Author:

Ibrahim IzzudinORCID,Tsubota Toshiki,Hassan Mohd Ali,Andou YoshitoORCID

Abstract

The use of biochar as an adsorbent for wastewater treatment purposes has been hindered due to its lower surface area compared to activated carbon. Current research on increasing surface functional groups on biochar surfaces to improve its adsorption performance suggests using high chemical concentration and long period of modification. This study solves these problems by focusing on improving surface functionalities of biochar via the hydrothermal functionalization process. Oil palm empty fruit bunch biochar was functionalized using autoclave with nitric acid as the functionalization agent. Functionalized biochar properties such as Brunauer–Emmett–Teller (BET) surface area and surface functional groups were analyzed and compared with untreated biochar. Fourier Transform Infrared (FTIR) spectroscopic analysis shows a significant increase in absorption by oxygen functional groups and is corroborated with energy dispersive X-ray (EDX) analysis. The process does not result in any major change in surface morphology and reduction in surface area value. Methylene blue (MB) adsorption test shows 7 times increase in adsorption performance. These results show that the simple hydrothermal functionalization process successfully functionalizes the biochar surface and improves its performance without affecting its surface area at lower concentration, and shorter time compared to previous studies. This result, with future large-scale experimentation using real-life equipment in palm oil mills, would provide a better technology that can be implemented in the industry.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3