The Influence of the Magnetic Field Line Curvature on Wall Erosion near the Hall Thruster Exit Plane

Author:

Quan Lulu1ORCID,Cao Yong1,Tian Bin12,Gong Keyu1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518071, China

2. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

One of the main factors that limit the lifetime of the Hall effect Thrusters (HETs) is the erosion of the acceleration channel caused by the flux of energetic ions. The magnetic field that is curved and convex towards the anode has been widely used in HETs because of its role in reducing the divergence angle of the ion beam and the channel wall erosion. However, the mechanism of the influence of the magnetic field line curvature on the wall erosion is not clear. Therefore, in this paper, a 2D3V numerical model based on the immersed-finite-element and particle-in-cell (IFE-PIC) method is established to simulate the radial-azimuthal plane near the exit of the Hall thruster. The effect of the tilt angle of the magnetic field line on the wall sputtering erosion rate is analyzed. The results show that compared to the case with the electric field E perpendicular to the magnetic field B, the energy of the ions hitting the channel wall is smaller and the wall erosion is weaker when the magnetic field lines are convex to the anode. As the tilt angle of the magnetic field lines increases from 0° to 60°, the erosion rate is reduced by 90%. Conversely, when the magnetic field lines are convex to the exit plane of the channel, the wall erosion is much more serious compared to the case with the orthogonal electric field E and the magnetic field B. As the tilt angle of the magnetic field line changes from 0° to 60°, the erosion rate is enhanced by 171%. The results in this paper are instructive for the design and optimization of the magnetic field of the HETs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Technology Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3