Human Activity Detection Using Smart Wearable Sensing Devices with Feed Forward Neural Networks and PSO

Author:

Al_Hassani Raghad Tariq12ORCID,Atilla Dogu Cagdas1ORCID

Affiliation:

1. Faculty of Engineering, Altinbas University, Istanbul 34676, Turkey

2. Ministry of Higher Education and Scientific Research, Baghdad 10065, Iraq

Abstract

Hospitals must continually monitor their patients’ actions to lower the chance of accidents, such as patient falls and slides. Human behavior is difficult to track due to the complexity of human activities and the unpredictable nature of their conduct. As a result, creating a static link that is used to influence human behavior is challenging, since it is hard to forecast how individuals will think or act in response to a certain event. Mobility tracking depends on intelligent monitoring systems that apply artificial intelligence (AI) applications referred to as “categories”. Because motion sensors, such as gyroscopes and accelerometers, output unconnected data that lack labels, event detection is a vital task. The fall feature parameters of tridimensional accelerometers and gyroscope sensors are presented and used, and the classification technique is based on distinguishing characteristics. This study focuses on the age-old problem of tracking turbulence in motion to improve detection precision. We trained the model, considering that detection accuracy is limited by factors such as the subject’s mass, velocity, and gait style. This is performed by employing an experimental dataset. When we used the sophisticated technique of particle swarm optimization (PSO) in combination with a four-stage forward neural network (4SFNN) to forecast four different types of turbulent motion, we observed that the total prediction accuracy was 98.615% accurate.

Funder

Raghad Tariq Al_Hassani

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3