Modeling Job Satisfaction of Peruvian Basic Education Teachers Using Machine Learning Techniques

Author:

Holgado-Apaza Luis Alberto1ORCID,Carpio-Vargas Edgar E.2ORCID,Calderon-Vilca Hugo D.3ORCID,Maquera-Ramirez Joab1ORCID,Ulloa-Gallardo Nelly J.1ORCID,Acosta-Navarrete María Susana4ORCID,Barrón-Adame José Miguel4ORCID,Quispe-Layme Marleny5ORCID,Hidalgo-Pozzi Rossana6ORCID,Valles-Coral Miguel7ORCID

Affiliation:

1. Departamento Académico de Ingeniería de Sistemas e Informática, Escuela Profesional de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru

2. Departamento Académico de Estadística e Informática, Escuela Profesional de Ingeniería Estadística e Informática, Facultad de Estadística e Informática, Universidad Nacional del Altiplano, Puno 21001, Peru

3. Departamento de Ingeniería de Software, Escuela de Ingeniería de Software, Facultad de Ingeniería de Sistemas e Informática, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru

4. Researcher Committee, Technological University of Southwest of Guanajuato, Guanajuato 38400, Mexico

5. Departamento Académico de Contabilidad y Administración, Escuela Profesional de Contabilidad y Finanzas, Facultad de Ecoturismo, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru

6. Departamento Académico de Ciencias Económicas, Facultad de Ciencias Económicas, Universidad Nacional de San Martín, Tarapoto 22200, Peru

7. Departamento Académico de Sistemas e Informática, Facultad de Ingeniería de Sistemas e Informática, Universidad Nacional de San Martín, Tarapoto 22200, Peru

Abstract

Teacher job satisfaction is an important aspect of academic performance, student retention, and teacher retention. We propose to determine the predictive model of job satisfaction of basic education teachers using machine learning techniques. The original data set consisted of 15,087 instances and 942 attributes from the national survey of teachers from public and private educational institutions of regular basic education (ENDO-2018) carried out by the Ministry of Education of Peru. We used the ANOVA F-test filter and the Chi-Square filter as feature selection techniques. In the modeling phase, the logistic regression algorithms, Gradient Boosting, Random Forest, XGBoost and Decision Trees-CART were used. Among the algorithms evaluated, XGBoost and Random Forest stand out, obtaining similar results in 4 of the 8 metrics evaluated, these are: balanced accuracy of 74%, sensitivity of 74%, F1-Score of 0.48 and negative predictive value of 0.94. However, in terms of the area under the ROC curve, XGBoost scores 0.83, while Random Forest scores 0.82. These algorithms also obtain the highest true-positive values (479 instances) and lowest false-negative values (168 instances) in the confusion matrix. Economic income, satisfaction with life, self-esteem, teaching activity, relationship with the director, perception of living conditions, family relationships; health problems related to depression and satisfaction with the relationship with colleagues turned out to be the most important predictors of job satisfaction in basic education teachers.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3